Energy transformation in clouds by Quantum approaches

Marika Tatishvili
Georgian Technical University

Abstract
The interaction of light (photon) and cloud particles according main quantum assumption that system internal energy is composed by bound microparticles (cluster) under certain conditions can obtain allowed discrete significances has been discussed in the article. The objective is to calculate the transition probability from one state into another caused by inner forces or any internal processes. The cluster may be presented as multipole system. The multipole is the system composed by couple opposite charges that have definite symmetry type. The simplest is the dipole. If the transition is forbidden in dipole approach it may happen in higher approaches – quadrupole (electric) or magnetic dipole. Their probability is approximately 10^6 times less than dipole. To search out transition probability of cluster from basic state into exciting or virtual one interacting with electromagnetic field the identification of Einstein factors have to be needed.

The some peculiarities of microstructure of cloud formations have been discussed using quantum disperse forces or Van-Der-Vaals forces that are typical for water particles. To obtain the expression for interaction potential the wave functions of basic and exited states of clusters and dispersion matrix have been introduced describing by virtual photon. It has been turned out that virtual photon interaction causes potential holes and barriers that are decreased by height and width. The isolated long wave quants may be the radiation that is generated throughout observed microphysical processes.