TiO₂ / ZnO Photocatalytic Activity for Hydrogen Production

Meshal S.Al-Johani¹, Yousef S.Al-Zaghayer^{2a}, Sulaiman I.Al-Mayman¹ maljuhni@kacst.edu.sa

Water and Energy Research Institute (WERI), King Abdulaziz City for Science and Technology, P.O.Box 6086 Riyadh 11442 Saudi Arabia ² Department of Chemical Engineering, King Saud University P.O. Box 800, Riyadh 11421, Saudi Arabia ^a Director of Industrial Catalysts Chair

Abstract— The present work investigates Zn doped TiO₂ (1.0, 5.0, 8.0, 10.0, 12.0 and 30.0 wt.%) Zn) photocatlaysts were prepared by low cost sol-gel auto-ignition method and systematically investigate their structural, optical and surface morphological properties with x-ray diffractometer, UV-Vis spectrophotometer, Fourier Transform Infrared spectrometer (FTIR) and scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDX). The photocatalytic H₂ evolution of the TiO₂-ZnO suspensions was evaluated in an aqueous ethanol medium (50 vol. %) under UV illumination. The Zn⁺² concentrations utilized to prepare TiO₂-ZnO nanocomposites were found to have significant effect on the specific surface area, pore volume, and photocatalytic activity. The H₂ evolution results obtained with TiO₂-ZnO nanocomposites were compared with H₂ generation using commercial TiO₂ P25 and individual TiO₂ nanoparticles. The photocatalytic activity of TiO₂-ZnO composite enhanced significantly as compared to bare TiO₂ nanoparticles and commercial TiO₂ P25. With respect to an increment in Zn⁺² doped, the photocatalytic activity of the composite increased and reaching an optimal H₂ production of 1048 µmol.h⁻¹ of catalyst for the TiO₂-ZnO composite containing 10 wt.% Zn. These solids were proved in the photocatalytic water splitting and resulted seven times more active (1048 μ mol.h⁻¹) than the reference TiO₂ (150 μ mol.h-1) and two times more active than TiO₂ P25 (595 µmol.h-1) semiconductors.

Keywords— Hydrogen production, Photocatalysts TiO2–ZnO, Photoconductors TiO2–ZnO, Water splitting.