Key Factor Identification for PM2.5 Formation in China: The Role of NH₃ in Atmospheric New Particle Formation

Dehong Xia^{1,2*}, Xin Liu³, Binfan Jiang¹,

¹School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China

 ² Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, University of Science and Technology Beijing, Beijing 100083, China
³ Beijing Society of Thermophysics and Energy Engineering, Beijing, China

> *Presenting author: Professor Dehong Xia School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China

> > Tel: +86 10 62334723 Fax: +86 10 62329145 E-mail: xia@me.ustb.edu.cn

Abstract

PM2.5 (particulate matters with aerodynamic diameter smaller than $2.5 \,\mu$ m) pollutions with adverse effect on human health and global climate has occurred frequently and caused widely concern in China. The main chemical compositions in PM2.5, *i.e.*, SO_4^{2-} , NO_3^- , NH_4^+ and organic compounds, are converted from SO_2 , NO_x , NH_3 and volatile organic compounds (VOCs), respectively. In order to find out the key factor for PM2.5 generations to help to relieve the air pollution, formation characteristics of PM2.5 is investigated. A property of electric neutrality of PM2.5 is proposed according to the least-energy principle and verified through electricity-charge calculation in this paper. As the only cation in the main chemical compositions of PM2.5, NH_4^+ is vital for anions (such as SO_4^{2-} and NO_3^{-}) to aggregate together and is a key factor for PM2.5 formations. The major source of PM2.5 is secondary new particulate formations (NPF) in atmosphere. Herein, to identify the role of NH₃ in atmospheric NPF, a new kinetic model, combining the oxidation of SO₂/NO₂ in SO₂/NO₂/NH₃/H₂O/air system and the aggregation of clusters in H₂SO₄/HNO₃/NH₃/VOC system, is established based on gaskinetic theory. From the modeling analysis, it is found that NH₃ can enhance PM2.5 formations not only by facilitating conversions of SO₂ and NO₂ indirectly, but also by promoting aggregations of H₂SO₄, HNO₃, NH₃ and VOCs directly. And the enhancement of conversion fractions for SO₂ and NO₂ during oxidation processes is the major effect of NH₃ on PM2.5 formations. In addition, the presence of NH₃ can particularly promote the contribution of HNO₃ in NPF process. Therefore, in order to relieve PM2.5 pollutions in China, the control strategies for NH₃ as current restrictions on SO_2 and NO_x are suggested to be enhanced by government, such as decreasing the amount of nitrogenous fertilizer utilization, or changing the fertilizing environment from dry condition to wet condition.

Keywords: PM2.5, NH₃, new particle formation, modeling studies, haze mitigation